

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 10

MARKS: 100

This memorandum consists of 10 pages.

Please turn over

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming answers/values in order to solve a problem is NOT acceptable.

1.1	Mean = $\frac{\sum_{i=1}^{n} x_i}{n} = \frac{929}{19} = 48,89$	$\begin{array}{c} \sqrt{929} \\ 19 \\ \sqrt{929} \\ 19 \\ \sqrt{929} \\ 19 \\ (2) \end{array}$
1.2	31; 31; 34; 36; 37; 39; 40; 43; 46; 46; 48; 52; 56; 60; 62; 63; 65; 66; 74.	✓ arranging in ascending order
	Median = 46	√median (2)
1.3	Lower quartile = 37 Upper quartile = 62	 ✓ lower quartile ✓ upper quartile (2)
1.4	• • • • • • • • • • • • • • • • • • •	 ✓ box with median ✓ whisker (2) [8]

2.1	The modal class is 25	$500 \le x < 450$	0		$\begin{array}{c} \checkmark \\ 2500 \le x < 4500 \\ (1) \end{array}$
2.2	Gross Vehicle Mass (GVM) (in kg)	Frequency	Midpoint	Frequency × midpoint	
	$2500 \le x < 4500$	103	3500	360 500	
	$4500 \le x < 6500$	19	5500	104 500	✓ midpoints
	$6500 \le x < 8500$	70	7500	525 000	$\checkmark \checkmark$ frequencies ×
	$8500 \le x < 10500$	77	9500	731 500	midpoint
	$10500 \le x < 12500$	85	11500	977 500	
	$12500 \le x < 14500$	99	13500	1 336 500	
	Sum	453		4 035 500	
		4025500	I	<u> </u>	✓4 035 500
	Estimated mean (\overline{X}) =	$=\frac{4035500}{453}=$	8908,39 kg.		\checkmark answer (5)
2.3	The estimated mean. It is more at the centre the extreme left-hand			al class is found at	✓ estimated mean with reason
					(1) [7]

	·	
3.1.1	$DE = \sqrt{(-3-3)^2 + (3-(-5))^2}$	✓ substitution into distance formula
	$=\sqrt{100}$	distance formula
	=10	√answer
	-10	(2)
3.1.2	$m = -\frac{-5-3}{-5-3}$	\checkmark substitution into
	$m_{DE} = \frac{-5 - 3}{3 - (-3)}$	gradient formula
	$=-\frac{4}{3}$	√answer
	$=-\frac{1}{3}$	(2)
3.1.3	$m_{EF} = \frac{3}{4}$ EF \perp DE	$\checkmark m_{EF} = \frac{3}{4}$ $\checkmark \frac{-5-k}{3-(-1)} = \frac{3}{4}$
	-5-k 3	$(-5-k)^{-3}$
	$\frac{-5-k}{3-(-1)} = \frac{3}{4}$	$\sqrt[4]{3-(-1)} = \frac{-1}{4}$
	$\frac{-5-k}{4} = \frac{3}{4}$	
	4 4 - 20 - 4k = 12	\checkmark simplification
	-4k = 32	
	k = -8	$\checkmark k = -8$
		(4)
3.1.4	M((-3)+(-1), 3+(-8))	\checkmark substitution into
	$M\left(\frac{(-3)+(-1)}{2};\frac{3+(-8)}{2}\right)$	midpoint formula
	$=\left(-2;-\frac{5}{2}\right)$	
	$=(-2,-\frac{1}{2})$	√answer
		(2)

5 NSC – Grade 10 Exemplar – Memorandum

3.1.5	If DEFG is a rectangle then M is also the midpoint of EG. Let the coordinates of G be $(x ; y)$ $\left(\frac{x+3}{2}; \frac{y+(-5)}{2}\right) = \left(-2; -\frac{5}{2}\right)$ $\frac{x+3}{2} = -2$ $\frac{y-5}{2} = -\frac{5}{2}$	$\sqrt{\frac{x+3}{2}} = -2$
	2 2 2 x+3 = -4 and $y-5 = -5x = -7$ $y = 0\therefore G(-7; 0)$	$\sqrt[4]{\frac{x+3}{2}} = -2$ $\sqrt[4]{x} = -7$ $\sqrt[4]{\frac{y-5}{2}} = -\frac{5}{2}$ $\sqrt[4]{y} = 0$
	OR	(4)
	The translation that sends $E(3; -5)$ to $F(-1; -8)$ also sends D(-3; 3) to G. (-1; -8) = (3 - 4; -5 - 3) $\therefore G = (-3 - 4; 3 - 3) = (-7; 0)$ OR	$\checkmark \text{ method} \\ \checkmark x - 4 \\ \checkmark y - 3 \\ \checkmark \text{ answer} $ (4)
	The translation that sends E(3; -5) to D(-3; 3) also sends F(-1; -8) to G. (-3; 3) = $(3 - 6; -5 + 8)$ \therefore G = $(-1 - 6; -8 + 8) = (-7; 0)$	$\checkmark \text{ method} \\ \checkmark x - 6 \\ \checkmark y + 8 \\ \checkmark \text{ answer} $ (4)
3.2	$\sqrt{(x-1)^2 + (5-(-2))^2} = \sqrt{53}$ (x-1) ² + 49 = 53 x ² - 2x + 1 + 49 - 53 = 0 x ² - 2x - 3 = 0 (x+1)(x-3) = 0 x = -1 or x = 3 but D is in the second quadrant ∴ only x = -1 is valid	 ✓ equation using distance formula ✓ standard form ✓ factorisation ✓ answer must exclude 3 (4) [18]

4.1.1	$\sin C = \frac{AB}{AC}$	\checkmark AC (1)
		(1)
4.1.2	$\cot A = \frac{AB}{BC}$	$\checkmark \cot A$ (1)
		(1)
4.2	$\frac{\sin 60^\circ \cdot \tan 30^\circ}{45^\circ}$	
	sec 45°	
	$=\frac{\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{3}}\right)}{\sqrt{2}}$	$\checkmark \checkmark$ substitution
	$=\frac{\frac{1}{2}}{\sqrt{2}}$ $=\frac{1}{2}\times\frac{1}{\sqrt{2}}$ $=\frac{1}{2\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}$	✓ simplification
	$=\frac{2\sqrt{2}}{1}\times\frac{\sqrt{2}}{\sqrt{2}}$	
	$2\sqrt{2}$ $\sqrt{2}$	
	$=\frac{\sqrt{2}}{4}$	✓ answer (4)
4.3.1	$r^2 = (-5)^2 + (12)^2$	(4) (4) (7) (4) (7) (7) (4) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7
	$r^2 = 169$	
	<i>r</i> = 13	$\checkmark r = 13$
	$\cos\theta = -\frac{5}{13}$	✓ answer (3)
4.3.2	$\csc^2\theta + 1$	
	$=\left(\frac{13}{12}\right)^2 + 1$	$\checkmark = \frac{13}{12}$
	$=\frac{169}{1000}+\frac{144}{1000}$	✓ simplification
	144 144	√answer
	$=\frac{313}{144}$	(3)
	144	[12]

5.1.1	$5\cos x = 3$	
	$\cos x = \frac{3}{5}$	$\checkmark \cos x = \frac{3}{5}$
	$x = \cos^{-1}\left(\frac{3}{5}\right)$ $x = 53,1^{\circ}$	✓ answer (2)
5.1.2	x = 55,1 $\tan 2x = 1,19$	(2)
5.1.2		
	$2x = \tan^{-1}(1,19)$	$\checkmark \checkmark 2x = 49,958^{\circ}$
	2x = 49,95845°	
	$x = 25^{\circ}$	✓ answer
5.1.3	$4 \sec x - 3 = 5$	(3)
5.1.5	$4 \sec x = 3$ $4 \sec x = 8$	
	$\sec x = 2$	$\checkmark \sec x = 2$
	$\frac{1}{\sec x} = \frac{1}{2}$	(inventing hath
		✓ inverting both sides
	$\cos x = \frac{1}{2}$	51405
	—	$\checkmark \cos x$
	$x = \cos^{-1}\left(\frac{1}{2}\right)$	
	$x = 60^{\circ}$	✓ answer
	$\lambda = 00$	(4)
5.2.1	$J\hat{K}D = 8^{\circ}$ alternate angles	✓ answer
		(1)
5.2.2	$\tan 8^{\circ} = \frac{5}{DK}$	\checkmark tan 8° = $\frac{5}{DK}$
	DV 5	$\sqrt{DK} = \frac{5}{5}$
	$DK = \frac{5}{\tan 8^{\circ}}$	$\checkmark DK = \frac{5}{\tan 8^\circ}$
	DK = 35,57684 km	
	DK = 35 577 m	\checkmark answer (3)
5.2.3	DS = 35,58 - 8 = 27,58 km	√ answer
		(1)
5.2.4	$\tan D\hat{S}J = \frac{5}{27,58}$	$\checkmark \tan D\hat{S}J = \frac{5}{27,58}$
	$D\hat{S}J = \tan^{-1}\left(\frac{5}{27,58}\right)$	
	$D\hat{S}J = 10,3^{\circ}$	✓ answer
		(2)
		[16]

7.1.1	$AH^2 = 0.8^2 + 1.5^2$	\checkmark AH ² = 0,8 ² + 1,5 ²
/.1.1	$AH^2 = 2,89$	-0.0 + 1.5
	AII - 2,07	✓ AH = 1,7
	AH = 1.7	,
710	AH = 1,7	(2)
7.1.2	Surface area of roof = $4 \times \frac{1}{2}(3 \times 1,7)$	$\checkmark 4 \times \frac{1}{2}(3 \times 1,7)$
	$= 10,2 \text{ m}^2$	✓answer
		(2)
7.1.3	Surface area of walls $= 4 \times 3 \times 2,1$	
	$= 25,2 \text{ m}^2$	\checkmark 25,2 m ²
	Total surface area = $10,2 \text{ m}^2 + 25,2 \text{ m}^2 = 35,4 \text{ m}^2$	✓ answer
		(2)
7.2.1	$Volume = \frac{4}{3}\pi(8)^3$	$\sqrt{\frac{4}{3}\pi(8)^3}$
	$= 2144,66 \text{ mm}^3$	✓ answer
		(2)
7.2.2	New volume : original volume = 2^3 : 1	$\checkmark 2^3$
1.2.2	= 8 : 1	✓ answer
	- 0 . 1	
		(2)
7.2.3	Volume including silver = $\frac{4}{3}\pi(9)^3 = 3\ 053,63\ \text{mm}^3$.	$\checkmark \frac{4}{3}\pi(9)^3$
	Volume of silver = $3053,63 - 2144,66$	✓ answer
	$= 908,97 \text{ mm}^3$	(2)
		[12]

8.1	OQ = 2 cm	(the long diagonal of a kite bisects the shorter diagonal)	$\begin{array}{c} \checkmark 2 \text{ cm} \\ \checkmark \text{ correct reason} \end{array} $ (2)
8.2	$\hat{POQ} = 90^{\circ}$	(the diagonals of a kite intersect at right angles)	$\begin{array}{c} \checkmark 90^{\circ} \\ \checkmark \text{ correct reason} \\ (2) \end{array}$
8.3	$\hat{QPO} = 20^{\circ}$	(the longer diagonal bisects the angles of a kite)	\checkmark QPO = 20° with correct reason
	$\therefore \hat{QPS} = 20^{\circ} + 20^{\circ}$	$=40^{\circ}$	$\checkmark \hat{Q}\hat{P}S = 40^{\circ}$
			(2) [6]

10 NSC – Grade 10 Exemplar – Memorandum

QUESTION 9

9.1	O is the midpoint of BD (Diagonals of parm BCDE bisect each other)	 ✓ O is the midpoint of BD ✓ reason – diagonals of parm
	F is the midpoint of OE (Diagonals of parm AODE bisect each other)	✓ F is the midpoint of OE
	$\therefore \text{ OF } \ \text{ AB} \qquad \qquad \dots \text{ (The line joining the midpoints of two sides in a } \Delta \text{ is } \ \text{ to third side)}$	✓ reason – midpoint theorem (4)
9.2	AE \parallel OD (Opp sides of parm AODE are \therefore AE \parallel OBparallel)	✓ AE OB ✓ reason
	OF AB (proven above) \therefore OE AB	✓ OE AB
	: ABOE is a parallelogram (both pairs of opposite sides of quad are parallel)	✓ reason – opp sides parallel (4)
9.3	In $\triangle ABO$ and $\triangle EOD$ 1. $AB = EO$ (Opp sides of parm ABOE are equal) 2. $AO = ED$ (Opp sides of parm AODE are equal) 3. $BO = DO$ (Diagonals of parm BCDE bisect each other)	✓ $AB = EO$ ✓ $AO = ED$ ✓ $reason - opp$ sides are equal ✓ $BO = DO$
	$\therefore \Delta ABO \equiv \Delta EOD \qquad (S, S, S)$	✓ reason – diagonals of parm (5) [13]

TOTAL: 100