basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS P2

EXEMPLAR 2012
MEMORANDUM

MARKS: 100

This memorandum consists of $\mathbf{1 0}$ pages.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming answers/values in order to solve a problem is NOT acceptable.

QUESTION 1

1.1	$\begin{equation*} \text { Mean }=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{929}{19}=48,89 \tag{2} \end{equation*}$	$\begin{aligned} & \checkmark \frac{929}{19} \\ & \checkmark \text { answer } \end{aligned}$
1.2	$\begin{aligned} & 31 ; 31 ; 34 ; 36 ; 37 ; 39 ; 40 ; 43 ; 46 ; 46 ; 48 ; 52 ; 56 ; 60 ; 62 ; \\ & 63 ; 65 ; 66 ; 74 . \\ & \text { Median }=46 \end{aligned}$	\checkmark arranging in ascending order \checkmark median
1.3	Lower quartile $=37$ Upper quartile $=62$	\checkmark lower quartile \checkmark upper quartile
1.4		\checkmark box with median \checkmark whisker (2) [8]

QUESTION 2

QUESTION 3

3.1.1	$\begin{aligned} \mathrm{DE} & =\sqrt{(-3-3)^{2}+(3-(-5))^{2}} \\ & =\sqrt{100} \\ & =10 \end{aligned}$	\checkmark substitution into distance formula \checkmark answer (2)
3.1.2	$\begin{aligned} m_{D E} & =\frac{-5-3}{3-(-3)} \\ & =-\frac{4}{3} \end{aligned}$	\checkmark substitution into gradient formula \checkmark answer
3.1.3	$\begin{align*} & m_{E F}=\frac{3}{4} \quad \mathrm{EF} \perp \mathrm{DE} \\ & \frac{-5-k}{3-(-1)}=\frac{3}{4} \\ & \frac{-5-k}{4}=\frac{3}{4} \\ &-20-4 k=12 \\ &-4 k=32 \\ & k=-8 \tag{4} \end{align*}$	$\begin{aligned} & \checkmark m_{E F}=\frac{3}{4} \\ & \checkmark \frac{-5-k}{3-(-1)}=\frac{3}{4} \\ & \checkmark \text { simplification } \\ & \checkmark k=-8 \end{aligned}$
3.1.4	$\begin{aligned} & \mathrm{M}\left(\frac{(-3)+(-1)}{2} ; \frac{3+(-8)}{2}\right) \\ & =\left(-2 ;-\frac{5}{2}\right) \end{aligned}$	\checkmark substitution into midpoint formula \checkmark answer (2)

3.1.5	If DEFG is a rectangle then M is also the midpoint of EG. Let the coordinates of G be $(x ; y)$ $\begin{array}{ll} \left(\frac{x+3}{2} ; \frac{y+(-5)}{2}\right)=\left(-2 ;-\frac{5}{2}\right) \\ \frac{x+3}{2}=-2 & \frac{y-5}{2}=-\frac{5}{2} \\ x+3=-4 & \text { and } \\ x=-7 & y-5=-5 \\ \therefore G(-7 ; 0) & \\ \therefore=0 \end{array}$ OR The translation that sends $\mathrm{E}(3 ;-5)$ to $\mathrm{F}(-1 ;-8)$ also sends $\mathrm{D}(-3 ; 3)$ to G . $\begin{aligned} & (-1 ;-8)=(3-4 ;-5-3) \\ & \therefore G=(-3-4 ; 3-3)=(-7 ; 0) \end{aligned}$ OR The translation that sends $\mathrm{E}(3 ;-5)$ to $\mathrm{D}(-3 ; 3)$ also sends $\mathrm{F}(-1 ;-8)$ to G . $\begin{aligned} & (-3 ; 3)=(3-6 ;-5+8) \\ & \therefore G=(-1-6 ;-8+8)=(-7 ; 0) \end{aligned}$	$\begin{aligned} & \checkmark \frac{x+3}{2}=-2 \\ & \checkmark x=-7 \\ & \checkmark \frac{y-5}{2}=-\frac{5}{2} \\ & \checkmark y=0 \end{aligned}$ \checkmark method $\checkmark x-4$ $\checkmark y-3$ \checkmark answer (4) \checkmark method $\checkmark x-6$ $\checkmark y+8$ \checkmark answer
3.2	$\begin{aligned} & \sqrt{(x-1)^{2}+(5-(-2))^{2}}=\sqrt{53} \\ & (x-1)^{2}+49=53 \\ & x^{2}-2 x+1+49-53=0 \\ & x^{2}-2 x-3=0 \\ & (x+1)(x-3)=0 \\ & x=-1 \text { or } x=3 \end{aligned}$ but D is in the second quadrant \therefore only $x=-1$ is valid	\checkmark equation using distance formula \checkmark standard form \checkmark factorisation \checkmark answer must exclude 3

QUESTION 4

4.1.1	$\sin C=\frac{\mathrm{AB}}{A C}$	\checkmark AC (1)
4.1.2	$\cot A=\frac{\mathrm{AB}}{\mathrm{BC}}$	$\checkmark \cot A$
4.2	$\begin{aligned} & \frac{\sin 60^{\circ} \cdot \tan 30^{\circ}}{\sec 45^{\circ}} \\ & =\frac{\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{3}}\right)}{\sqrt{2}} \\ & =\frac{\frac{1}{2}}{\sqrt{2}} \\ & =\frac{1}{2} \times \frac{1}{\sqrt{2}} \\ & =\frac{1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\ & =\frac{\sqrt{2}}{4} \\ & \hline \end{aligned}$	$\checkmark \checkmark$ substitution \checkmark simplification \checkmark answer (4)
4.3.1	$\begin{align*} & r^{2}=(-5)^{2}+(12)^{2} \\ & r^{2}=169 \\ & r=13 \\ & \cos \theta=-\frac{5}{13} \tag{3} \end{align*}$	$\begin{aligned} & \checkmark r^{2}=(-5)^{2}+(12)^{2} \\ & \checkmark r=13 \\ & \checkmark \text { answer } \end{aligned}$
4.3.2	$\begin{aligned} & \operatorname{cosec}^{2} \theta+1 \\ & =\left(\frac{13}{12}\right)^{2}+1 \\ & =\frac{169}{144}+\frac{144}{144} \\ & =\frac{313}{144} \end{aligned}$	$\checkmark=\frac{13}{12}$ \checkmark simplification \checkmark answer

QUESTION 5

5.1.1	$\begin{align*} 5 \cos x & =3 \\ \cos x & =\frac{3}{5} \\ x & =\cos ^{-1}\left(\frac{3}{5}\right) \\ x & =53,1^{\circ} \tag{2} \end{align*}$	$\checkmark \cos x=\frac{3}{5}$ \checkmark answer
5.1.2	$\begin{aligned} \tan 2 x & =1,19 \\ 2 x & =\tan ^{-1}(1,19) \\ 2 x & =49,95845 \ldots . . .^{\circ} \\ x & =25^{\circ} \end{aligned}$	$\checkmark \checkmark 2 x=49,958 \ldots .{ }^{\circ}$ \checkmark answer
5.1.3	$\begin{align*} 4 \sec x-3 & =5 \\ 4 \sec x & =8 \\ \sec x & =2 \\ \frac{1}{\sec x} & =\frac{1}{2} \\ \cos x & =\frac{1}{2} \\ x & =\cos ^{-1}\left(\frac{1}{2}\right) \\ x & =60^{\circ} \tag{4} \end{align*}$	$\checkmark \sec x=2$ \checkmark inverting both sides $\checkmark \cos x$ \checkmark answer
5.2.1	$\mathrm{JK} \mathrm{D}=8^{\circ} \quad$ alternate angles	\checkmark answer (1)
5.2.2	$\begin{aligned} & \tan 8^{\circ}=\frac{5}{\mathrm{DK}} \\ & \mathrm{DK}=\frac{5}{\tan 8^{\circ}} \\ & \mathrm{DK}=35,57684 \ldots . . . \mathrm{km} \\ & \mathrm{DK}=35577 \mathrm{~m} \end{aligned}$	$\checkmark \tan 8^{\circ}=\frac{5}{\mathrm{DK}}$ $\checkmark \mathrm{DK}=\frac{5}{\tan 8^{\circ}}$ \checkmark answer
5.2.3	DS $=35,58-8=27,58 \mathrm{~km}$	\checkmark answer (1)
5.2.4	$\begin{aligned} & \tan \mathrm{D} \hat{\mathrm{~S}} \mathrm{~J}=\frac{5}{27,58} \\ & \mathrm{D} \hat{S} \mathrm{~J}=\tan ^{-1}\left(\frac{5}{27,58}\right) \\ & \mathrm{D} \hat{S} \mathrm{~J}=10,3^{\circ} \end{aligned}$	$\checkmark \tan \mathrm{DS} \mathrm{~J}=\frac{5}{27,58}$ \checkmark answer

QUESTION 6

6.1.1		\checkmark correct x-intercepts \checkmark correct y-intercept \checkmark asymptotes \checkmark shape (must pass through ($45^{\circ} ; 2$))
6.1.2	$y=-2 \tan x$	\checkmark answer (1)
6.2.1	$\begin{aligned} g(x) & =a \sin x \\ 4 & =a \sin 90^{\circ} \\ 4 & =a(1) \\ a & =4 \end{aligned}$	$\checkmark \quad a=4$
6.2.2	Range is $-2 \leq y \leq 6$.	$\begin{align*} & \checkmark-2 \\ & \checkmark 6 \tag{2} \end{align*}$

QUESTION 7

7.1.1	$\begin{align*} & \mathrm{AH}^{2}=0,8^{2}+1,5^{2} \\ & \mathrm{AH}^{2}=2,89 \\ & \mathrm{AH}=1,7 \tag{2} \end{align*}$	$\begin{aligned} & \checkmark \mathrm{AH}^{2}=0,8^{2}+1,5^{2} \\ & \checkmark \mathrm{AH}=1,7 \end{aligned}$
7.1.2	$\begin{align*} \text { Surface area of roof } & =4 \times \frac{1}{2}(3 \times 1,7) \\ & =10,2 \mathrm{~m}^{2} \tag{2} \end{align*}$	$\checkmark 4 \times \frac{1}{2}(3 \times 1,7)$ \checkmark answer
7.1.3	$\begin{aligned} \hline \text { Surface area of walls } & =4 \times 3 \times 2,1 \\ & =25,2 \mathrm{~m}^{2} \end{aligned} \quad \begin{aligned} \text { Total surface area }= & 10,2 \mathrm{~m}^{2}+25,2 \mathrm{~m}^{2}=35,4 \mathrm{~m}^{2} \end{aligned}$	$\checkmark 25,2 \mathrm{~m}^{2}$ \checkmark answer (2)
7.2.1	$\begin{aligned} \text { Volume } & =\frac{4}{3} \pi(8)^{3} \\ & =2144,66 \mathrm{~mm}^{3} \end{aligned}$	$\checkmark \frac{4}{3} \pi(8)^{3}$ \checkmark answer
7.2.2	$\begin{aligned} \text { New volume : original volume } & =2^{3}: 1 \\ & =8: 1 \end{aligned}$	$\sqrt{ } 2^{3}$ \checkmark answer
7.2.3	$\begin{aligned} & \text { Volume including silver }=\frac{4}{3} \pi(9)^{3}=3053,63 \mathrm{~mm}^{3} . \\ & \begin{aligned} \text { Volume of silver } & =3053,63-2144,66 \\ & =908,97 \mathrm{~mm}^{3} \end{aligned} \end{aligned}$	$\checkmark \frac{4}{3} \pi(9)^{3}$ \checkmark answer (2) [12]

QUESTION 8

8.1	$\begin{array}{ll} \mathrm{OQ}=2 \mathrm{~cm} & \begin{array}{l} \ldots \text { (the long diagonal of a kite bisects } \\ \text { the shorter diagonal) } \end{array} \end{array}$	$\checkmark 2 \mathrm{~cm}$ \checkmark correct reason (2)
8.2	$\begin{array}{ll} \text { PÔQ }=90^{\circ} & \begin{array}{l} \ldots \text { (the diagonals of a kite intersect at } \\ \text { right angles) } \end{array} \end{array}$	$\checkmark 90^{\circ}$ \checkmark correct reason (2)
8.3	$\begin{aligned} & \mathrm{QPO}=20^{\circ} \quad \begin{array}{l} \ldots \text { (the longer diagonal bisects the } \\ \text { angles of a kite) } \end{array} \\ & \therefore \mathrm{QPS}=20^{\circ}+20^{\circ}=40^{\circ} \end{aligned}$	$\checkmark \mathrm{QPO}=20^{\circ}$ with correct reason $\begin{equation*} \checkmark \mathrm{QPS}=40^{\circ} \tag{2} \end{equation*}$

QUESTION 9

| 9.1 | O is the midpoint of BD. \quad.... (Diagonals of parm BCDE bisect
 each other)F is the midpoint of OE.\ldots. (Diagonals of parm AODE bisect
 each other)$\therefore \mathrm{OF} \\| \mathrm{AB} \quad$$\ldots$. (The line joining the midpoints of
 two sides in a Δ is $\\|$ to third side) | $\checkmark \mathrm{O}$ is the midpoint of BD
 \checkmark reason diagonals of parm $\checkmark F$ is the midpoint of OE
 \checkmark reason midpoint theorem | | | | |
|---|---|---|---|---|---|---|---|---|
| 9.2 | $\mathrm{AE} \\| \mathrm{OD}$
 $\therefore \mathrm{AE} \\| \mathrm{OB}$ \ldots. (Opp sides of parm AODE are
 $\mathrm{OF} \\| \mathrm{AB}$ parallel)
 $\therefore \mathrm{OE} \\| \mathrm{AB}$ \ldots. (proven above)
 \therefore ABOE is a parallelogram \ldots. (both pairs of opposite sides of
 quad are parallel) | \checkmark AE \|| OB
 \checkmark reason $\checkmark \mathrm{OE} \\| \mathrm{AB}$
 \checkmark reason - opp sides parallel |
| 9.3 | In $\triangle \mathrm{ABO}$ and $\triangle \mathrm{EOD}$
 1. $\mathrm{AB}=\mathrm{EO}$
 2. $\mathrm{AO}=\mathrm{ED}$
 3. $\quad \mathrm{BO}=\mathrm{DO}$ $\ldots(\mathrm{Opp}$ sides of parm ABOE are equal)
 other)
 otiagonals of parm
 $\therefore \triangle \mathrm{ABO} \equiv \triangle \mathrm{EOD}$ $(\mathrm{S}, \mathrm{S}, \mathrm{S})$ | $\checkmark \mathrm{AB}=\mathrm{EO}$
 $\checkmark \mathrm{AO}=\mathrm{ED}$
 \checkmark reason - opp
 sides are equal
 $\checkmark \mathrm{BO}=\mathrm{DO}$
 \checkmark reason -
 diagonals of parm |

